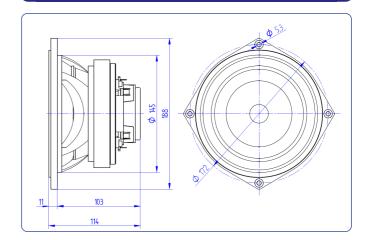


6CX200Fe COAXIAL TRANSDUCER

KEY FEATURES

- High power handling: 200 / 25 W_{AES} (LF / HF)
- High sensitivity: 94 / 102 dB (LF / HF)
- Low resonant frequency: 65 Hz
- · Demodulating ring in LF unit
- CONEX Spider
- PM-4 diaphragm
- Low weight and mounting depth
- 70° coverage horn for HF dispersion control
- Designed for compact cabinets


TECHNICAL SPECIFICATIONS

Nominal diameter Rated impedance (LF/HF)	165 mr	n 6,5 in 8 / 8 Ω	
Minimum impedance (LF/HF)		5,3 / 6 Ω	
Power capacity* (LF/HF)	200	/ 25 W _{AES}	
Program power (LF/HF)	400 / 50 W		
Sensitivity (LF/HF**)	94 dB	1W @ Z _N	
	102 dB	1W @ Z _N	
Frequency range	60 - 2	20.000 Hz	
Recom. HF crossover		or higher of min slope)	
Voice coil diameter (LF/HF)	50,8 mm	2 in	
	25,4 mm	1 in	
BL factor		9,15 N/A	
Moving mass		0,014 kg	
Voice coil length		13 mm	
Air gap height		7 mm	
X _{damage} (peak to peak)		32 mm	

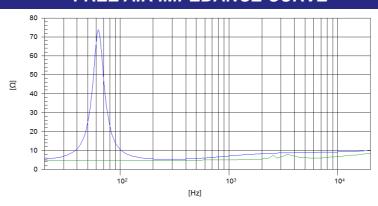
THIELE-SMALL PARAMETERS***

Resonant frequency, f _s	65 Hz
D.C. Voice coil resistance, R _e	4,9 Ω
Mechanical Quality Factor, Q _{ms}	5,1
Electrical Quality Factor, Q _{es}	0,34
Total Quality Factor, Qts	0,32
Equivalent Air Volume to C _{ms} , V _{as}	10,5 I
Mechanical Compliance, C _{ms}	408 μm / N
Mechanical Resistance, R _{ms}	1,13 kg / s
Efficiency, η ₀	0,8 %
Effective Surface Area, S _d	0,0135 m ²
Maximum Displacement, X _{max} ****	5 mm
Displacement Volume, V _d	64 cm ³
Voice Coil Inductance, Le @ 1 kHz	0,3 mH

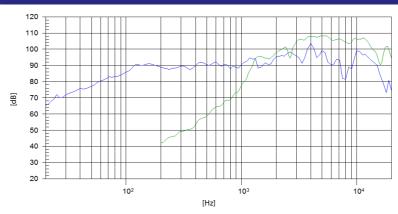
DIMENSION DRAWINGS

MOUNTING INFORMATION

Overall diameter	188 mm	7,40 in
Bolt circle diameter	172 mm	6,77 in
Baffle cutout diameter:		
- Front mount	145 mm	5,72 in
Depth	106 mm	4,17 in
Volume displaced by driver	0,55 l	0,02 ft ³
Net weight	3,6 kg	7,9 lb
Shipping weight	4,0 kg	8,8 lb

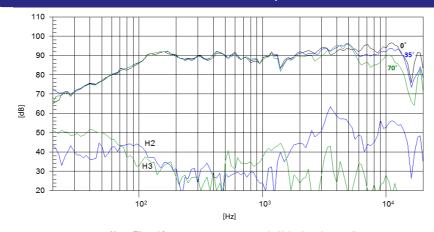

Notes

- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 1 7 kHz.
- *** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- **** The X_{max} is calculated as $(L_{VC}$ $H_{ag})/2$ + $(H_{ag}/3,5)$, where L_{VC} is the voice coil length and H_{ag} is the air gap height.



6CX200Fe COAXIAL TRANSDUCER

FREE AIR IMPEDANCE CURVE



FREQUENCY RESPONSE

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FILTERED AND OFF-AXIS FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m with FD-2CX/Fe

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain) • Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •