FULL RANGE FREQUENCY TRANSDUCER
Preliminary Data Sheet

KEY FEATURES

- 4" full-range compact ferrite loudspeaker
- 80 W program power
- Extended response and low distortion
- Paper cone and Santoprene ${ }^{\text {TM }}$ surround

TECHNICAL SPECIFICATIONS

Nominal diameter	100 mm	4 in
Rated impedance	8Ω	
Minimum impedance		$7,3 \Omega$
Power capacity ${ }^{1}$		$400 \mathrm{~W}_{\text {AES }}$
Program power ${ }^{2}$		800 W
Sensitivity	87 dB	$1 \mathrm{~W} / 1 \mathrm{~m} @ \mathrm{Z}_{\mathrm{N}}$
Frequency range	$100-20.000 \mathrm{~Hz}$	
Voice coil diameter	$20,3 \mathrm{~mm}$	$0,8 \mathrm{in}$
BI factor	$4,2 \mathrm{~N} / \mathrm{A}$	
Moving mass	$0,0044 \mathrm{~kg}$	
Voice coil length	$7,7 \mathrm{~mm}$	
Air gap height		5 mm

- Pressed steel basket
- Ceramic magnet
- Ideal form beam-steering application (columns), portable array and compact applications

THIELE-SMALL PARAMETERS ${ }^{3}$

Resonant frequency, $\mathbf{f}_{\mathbf{s}}$	92 Hz
D.C. Voice coil resistance, $\mathbf{R}_{\mathbf{e}}$	$6,4 \Omega$
Mechanical Quality Factor, $\mathbf{Q}_{\mathbf{m s}}$	11,3
Electrical Quality Factor, $\mathbf{Q}_{\mathbf{e s}}$	0,96
Total Quality Factor, $\mathbf{Q}_{\mathbf{t s}}$	0,88
Equivalent Air Volume to $\mathbf{C}_{\mathbf{m s}}, \mathbf{V}_{\text {as }}$	$2,8 \mathrm{l}$
Mechanical Compliance, $\mathbf{C}_{\mathbf{m s}}$	$668 \mu \mathrm{~m} / \mathrm{N}$
Mechanical Resistance, $\mathbf{R}_{\mathbf{m s}}$	$0,23 \mathrm{~kg} / \mathrm{s}$
Efficiency, $\boldsymbol{\eta}_{\mathbf{0}}$	$0,22 \%$
Effective Surface Area, $\mathbf{S}_{\mathbf{d}}$	$0,0055 \mathrm{~m}^{2}$
Maximum Displacement, $\mathbf{X}_{\text {max }}$	3 mm
Displacement Volume, $\mathbf{V}_{\mathbf{d}}$	$11 \mathrm{~cm}^{3}$
Voice Coil Inductance, $\mathbf{L}_{\mathbf{e}}$ @ 1 kHz	$0,2 \mathrm{mH}$

[^0]

Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

- Frequency response on axis

MOUNTING INFORMATION

Overall diameter
Bolt circle diameter

Baffle cutout diameter:

Baffle cutout diameter:		
- Front mount	92 mm	$3,6 \mathrm{in}$
Depth	60 mm	$2,4 \mathrm{in}$
Net weight	$0,55 \mathrm{~kg}$	$1,2 \mathrm{lb}$
Shipping weight	$0,75 \mathrm{~kg}$	$1,6 \mathrm{lb}$

DIMENSION DRAWING

[^0]: Notes:
 ${ }^{1}$ The power capaticty is determined according to AES2-1984 (r2003) standard.
 ${ }^{2}$ Program power is defined as power capacity +3 dB .
 ${ }^{3} \mathrm{~T}$-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
 ${ }^{4}$ The $X_{\text {max }}$ is calculated as $\left(L_{v c}-H_{a g}\right) / 2+\left(H_{a g} / 3,5\right)$, where $L_{v c}$ is the voice coil length and H_{ag} is the air gap height.

